Block row recursive least-squares migration

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block row recursive least squares migration

Recursive estimates of large systems of equations in the context of least squares fitting is a common practice in different fields of study. For example, recursive adaptive filtering is extensively used in signal processing and control applications. The necessity of solving least squares problem via recursive algorithms comes from the need of fast real-time signal processing strategies. Computa...

متن کامل

Kernel Recursive Least Squares

We present a non-linear kernel-based version of the Recursive Least Squares (RLS) algorithm. Our Kernel-RLS algorithm performs linear regression in the feature space induced by a Mercer kernel, and can therefore be used to recursively construct the minimum meansquared-error regressor. Sparsity (and therefore regularization) of the solution is achieved by an explicit greedy sparsification proces...

متن کامل

Recursive Least Squares Estimation

We start with estimation of a constant based on several noisy measurements. Suppose we have a resistor but do not know its resistance. So we measure it several times using a cheap (and noisy) multimeter. How do we come up with a good estimate of the resistance based on these noisy measurements? More formally, suppose x = (x1, x2, . . . , xn) T is a constant but unknown vector, and y = (y1, y2, ...

متن کامل

Hierarchic Kernel Recursive Least-Squares

We present a new hierarchic kernel based modeling technique for modeling evenly distributed multidimensional datasets that does not rely on input space sparsification. The presented method reorganizes the typical single-layer kernel based model in a hierarchical structure, such that the weights of a kernel model over each dimension are modeled over the adjacent dimension. We show that the impos...

متن کامل

Migration Deconvolution versus Least Squares Migration

Both migration deconvolution (MD) and least squares migration (LSM) are capable of improving the resolution and suppress acquisition footprints in migrated images. In this report, I investigate the relative performance of these two methods in enhancing migration image quality, suppressing artifacts and computational efficiency. Both MD and LSM were implemented on synthetic data generated from p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: GEOPHYSICS

سال: 2015

ISSN: 0016-8033,1942-2156

DOI: 10.1190/geo2015-0070.1